Question Number	Answer	Mark
1	QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence Observations: Most alpha went straight through (1) Some deflected (1) (Very) few came straight back/large angle (1) Conclusions: Atom mainly (empty) space (1) Nucleus contains most of the mass (1) (Nucleus) very small/tiny (1) (Nucleus) charged /positive (1)	QWC 5 max
	Total for question	5

Question	Answer		Mark
Number			
2 (a)	Only (moving) charged particles are deflected by a magnetic field	(1)	
	Or		
	Only charged particles can be accelerated to produce a beam	(1)	1
2(b)	Into the page	(1)	1
2(c)	Use of $F = mv^2/r$ Or use of $r = p/BQ$	(1)	
	Use of $F = Bqv$ Or use of $p = mv$	(1)	
	$m = 6.64 \times 10^{-26} \mathrm{kg}$	(1)	3
	Example of calculation		
	$\frac{1}{mv^2/r} = Bqv$		
	$m = Bqr/v = (0.673 \text{ T} \times 1.6 \times 10^{-19} \text{ C} \times 7.40 \times 10^{-2} \text{ m}) / 1.20 \times 10^{5} \text{ m s}^{-1}$		
	$m = 6.64 \times 10^{-26} \mathrm{kg}$		
2(d)	Somicircle drawn starting from some initial point and a smaller radius	(1)	1
2(u)	Semicircle drawn starting from same initial point <u>and</u> a smaller radius	(1)	
	Total for question		6

Question	Answer		Mark
Number			
*3	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Alternating p.d. max 2		
	Electric field/ p.d. accelerates particles Or Electric field /p.d. gives particles energy	(1)	
	Constant time period Or constant frequency	(1)	
	Polarity of dees switches every half cycle Or P.d. switches every half cycle	(1)	
	Magnetic field max 2	(1)	
	Magnetic field/force at right angles to particles path		
	Maintains circular motion (whilst in dees) Or Experiences centripetal	(1)	
	force/acceleration (whilst in dees)	(1)	4
	Radius of circle increases as particles get faster		
	Total for question		4

Question Number	Answer		Mark
*4(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Provides a force on the proton/particle	(1)	
	Which accelerate the proton/particle Or gives energy to the protons/particles	(1)	
	Magnetic field		
	Provides a force on a moving proton Or Provides a force at right angles to the direction of motion (of the protons)	(1)	
	Acts as a centripetal force Or produces circular motion	(1)	
	Additional detail about either field E field across gap only		
	Or The idea that the E field is reversed /alternates every half	(1)	5
	cycle Or B field perpendicular to the Dees	(1)	5
	(this mark may be awarded from a diagram)		
4(b)	Division by a (ignore neuror of 10 error)	(1)	
4(0)	multiplication by c^2	(1) (1)	
	$Mass = 0.14 (GeV/c^2)$	(1)	3
	Example of calculation Mass = $(2.5 \times 10^{-28} \text{ kg} \times 9 \times 10^{-16} \text{ m}^2 \text{ s}^{-2})/1.6 \times 10^{-19} \text{ C}$		
	Mass = $0.14 \times 10^{9} \text{ eV/c}^{2} = 0.14 \text{ GeV/c}^{2}$		
4(c)	2/3 charge of a proton Or 2/3 charge of a positron Or 2/3 <u>positive</u> value of the charge on an electron Or 2/3e ⁺	(1)	1
4(d)(i)			
	Particle Quark combination		
	K ⁻ – su	(1)	
	K+ -	(1)	
		(1)	3
	sd or ds	(_)	C
4(d)(ii)	Mass-energy is conserved Or a comment about $E = m c^2$	(1)	
	Appropriate reference to colliding particles having mass and kinetic energy The extra mass comes from the kinetic energy	(1)	2
	energy the extra mass comes from the <u>kinetic</u> energy.	(1)	5
oioo Andl Act	Total for question		15

Question	Answer	Mark
Number		
5 (a)	(Total / sum of) Kinetic energy conserved	(1)
5(b)	These diagrams could appear in part c and should be credited in (b)	
		(1)
		(1)
	[allow first mark for any triangle or parallelogram ie do not insist on right angle] right angle labelled or approximately by eye / diagonal should be labelled "before" or "initial" or appropriately recognisable as incoming particle	
5 (c)	KE as formula eg $\frac{1}{2}$ mu ² = $\frac{1}{2}$ mv ² + $\frac{1}{2}$ ms ² / p ² / 2m = p ² / 2m + p ² / 2m Recognition of "Pythagoras"	(1) (1)
5(d)(i)	Electric field	(1)
	Does work on proton/applies a force /repel/attract	(1)
	qV / Fd / Eq	(1)
5(d)(ii)	Mass of incoming proton larger (than rest mass)	(1)
	Due to moving near speed of light/high speed/high energy/relativistic	(1)
	Alt answer : image not in plane of two protons after the event	(2)
		(max 2)
5(e)	Out of the plane of paper	(1)
	Total for question	11

Question	Answer		Mark
Number 6(a)	Arrow(s) downwards	(1)	1
$\mathbf{U}(\mathbf{a})$	Anow(s) downwards	(1)	I
6(b)	Use of $E = V/d$	(1)	
	Use of $F = EQ$	(1)	
	$F = 5.1 \times 10^{-16} \mathrm{N}$	(1)	3
	Example of coloulation		
	$\frac{E \times an pre or carculation}{F = (160 \text{ V} \times 1.6 \times 10^{-19} \text{ C})/5.0 \times 10^{-2} \text{ m}}$		
	$F = 5.12 \times 10^{-16} \text{ N}$		
6(c)	Between the plates there is an acceleration/force which is	(1)	
	vertical/upwards	(1)	
	Constant horizontal velocity	(1)	
	Constant nonzontal velocity		
	Outside the plates no (electric) field /force acts	(1)	3
	Or Outside the plates speed so large that gravitational effect		
	negligible		
(d)(i)	Palages of (surfage) electrons due to heating	(1)	1
0(u)(I)	Release of (surface) electrons due to heating	(1)	1
6(d)(ii)	Use of $E_{\rm k} = \frac{1}{2}mv^2$	(1)	
	Use of $V = W/Q$	(1)	
	p.d. = 410 V	(1)	3
	Example of calculation		
	$\frac{E_{\rm k}}{E_{\rm k}} = 9.11 \times 10^{-31} \text{kg} \times (1.2 \times 10^7 \text{m s}^{-1})^2 / 2$		
	$E_{\rm k} = 6.56 \times 10^{-17} {\rm J}$		
	$\mathbf{p}.\mathbf{d}. = (6.56 \times 10^{-17} \text{J})/(1.6 \times 10^{-19} \text{C})$		
	p.d. = 410V		
	Total for question		11

Question	Answer	Mark
Number		
7(a)	At least 3 parallel straight lines	(1)
	ALL Equispaced (except ignore a large gap in middle) [be firm]	(1)
	Arrow left to right	(1)
7 (b)	Use of eV [eg 1.6 x10 ⁻¹⁹ or 2000/4000]	(1)
	$(=) \frac{1}{2} mv^2$	(1)
	Use of 2000	(1)
7 (c)	Use of $v = s/t$ [eg = 1.5 / 23 (x 10 ⁻⁶)]	(1)
	(= 65000)	
	Sub into previous equation	(1)
	$m = 1.5 \times 10^{-25} \text{ kg}$	(1)
7(d)	Some of the molecules in sample will travel further/less/not midway	(1)
	Duration of laser pulse	(1)
	Might emerge not horizontal	(1)
	Molecules may be doubly/integer ionised	(1)
	Time very small	(1)
	Not perfect vacuum / collides with other molecules	(1)
	·	(max2)
	Total for question	11